

STRUCTO

HIS ingenious material gives the boy the foundation for a practicalengineering education while at play. STRUCTO materials embody all the fundamental principles of Mechanical Engineering-Beams, Bolts, Wheels, Axles, Pulleys, Gears, etc., all made to gauge, and interchangeable. The possibilities of STRUCTO are practically unlimited, and with it any one can build wagons, cars, derricks, bridges, mills and mechanical conveyors, etc., in almost any design that may suit his fancy.

STRUCTO quickens the ingenuity, and the boys' interest in it never ceases, for to-day the parts may be used to construct a wagon, a derrick or mill, and to-morrow the same parts may be assembled in something entirely different and of his own design.

Boys are not destructive unless you burden them with fragile toys that they cannot take apart and then put together again. Watch any boy, who destroys things, and

MATERIAL

TOYS, MODELS, MECHAN-
 ICAL DEMONSTRATIONS AND MANUAL TRAINING

you will observe that he tries still harder to put them together again, and is deeply distressed if he finds he cannot do so.

Building with STRUCTO teaches observation, because a boy or man, after building with it a simple wagon, such as he passes on the street every day, will begin to notice points about wagons that he never saw or thought of before.

STRUCTO will increase the value of any toys a boy now has, because he can build with it many things that can be used with the old playthings, and thus interest in them is renewed.

Give the boys the happiness of production, which is the greatest pleasure of the human being. With STRUCTO a boy will study with intense eagerness and happiness, because it appeals to the muscles, the hands, the eyes, and the child's real understanding.

An hour spent happily and willingly absorbing knowledge is of more value to a child than weeks and months of forcing against the grain.

MODELS MADE WITH STRUCTO OUTFIT No. 1

Structo Models are Realistic in Appearance

Page 2

Camp Stool, Outfit No. 1 MATERIAL

4 Steel Beams, 7 holes
4 Steel Beams, 5 holes
3 Steel Beams, 4 holes
6 Brackets
16 Bolts and Nuts
EXTRA Material
2 Steel Beams, 7 holes

Chair, Outfit No. 1
material
2 Steel Beams, 11 holes 4 Steel Beams, 5 holes 5 Steel Beams, 4 holes
10 Brackets
20 Bolts and Nuts

Camp Stool, Outfit No. 1

> MATERIAL

4 Steel Beams, 7 holes
4 Steel Beams, 5 holes
3 Steel Beams, 4 holes
6 Brackets
16 Bolts and Nuts

EXTRA MATERIAL
2 Steel Beams, 7 holes

Lawn Swing, Outfit No. 1 material
2 Steel Beams, 11 holes 2 Steel Beams, 7 holes 1 Steel Beam, 5 holes 3 Steel Beams, 3 holes 2 Steel Beams, 2 holes 2 Angle Plates, $1 \times 3 \times 9$ holes 1 Shaft, $3^{1}+$ in.
2 Hangers
19 Bolts and Nuts
8 Brackets
4 Collars

Structural Construction is

 as Essential as Mechanical

Lawn Roller, Outfit No. 1
MATERIAL
2 Steel Beams, 7 holes 2 Steel Beams, 3 holes 2 Steel Beams, 2 holes
1 Shaft $21 / 2 \mathrm{in}$.
4 Wagon Wheels
8 Bolts and Nuts
6 Brackets

Express Truck (Wagon)
Outfit No. 1
MATERIAL
2 Steel Beams, 11 holes
5 Steel Beams, 5 holes
4 Steel Beams, 4 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
2 Shafts, $33 / 4 \mathrm{in}$.
4 Wagon Wheels
2 Hangers
22 Bolts and Nuts
6 Brackets

Baggage Truck
Outfit No. 1
MATERIAL
2 Steel Beams, 11 holes
2 Steel Beams, 7 holes
4 Steel Beams, 5 holes
2 Steel Beams, 4 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
1 Shaft, $3^{3 / 4} \mathrm{in}$.
2 Wagon Wheels
16 Balts and Nuts
4 Brackets

Rail Road Semaphore
Outfit No. 1
MATERIAL
2 Steel Beams, 11 holes
2 Steel Beams, 7 holes
5 Steel Beams, 5 holes
2 Steel Beams, 4 holes
7 Steel Beams, 3 holes
2 Angle Brackets
1 Pulley, $1 / 2$ in.
1 Spider Wheel
1 Angle Plate, $1 \times 3 \times 9$ holes
1 Shaft, $3^{3}+\mathrm{in}$.
18 Steel Bolts and Nuts
2 Long Bolts and Nuts

Small Derrick, Outfit No. 1
MATERIAL
20 Short Bolts and Nuts
2 Steel Beams, 11 holes
2 Steel Beams, 7 holes
4 Steel Beams, 5 holes
4 Steel Beams, 4 holes
3 Steel Beams, 3 holes
2 Angle Plates, 1x3x9 holes
1 Crank Shaft
2 Shafts, $3^{3}+\mathrm{in}$.
1 Shaft, $11 / 2 \mathrm{in}$.
2 Collars
1 Spider Wheel
1 Pulley, 1/2 in.
4 Wagon Wheels
1 Hanger
1 Hook

Portable Serving Table Outfit No. 1 material

2 Angle Plates, $1 \times 3 \times 9$ holes 2 Steel Beams, 11 holes
2 Steel Beams, 7 holes
2 Steel Beams, 5 holes
2 Shafts, $3^{3}+\mathrm{in}$.
4 Wagon Wheels
10 Short Bolts and Nuts
Structo is Most Practical for Toy Building
Your Boy Can

SIGN AND MAIL THE POSTAL CARD EN POSTAL CARD EN CLOSED IN EACH OUTFIT. YOU WILL RECEIVE ILLUSTRA TIONS OF THE NEW MODELS THAT OUR EXPERIMENTAL DEPARTMENT IS CONSTANTLY TURNING OUT LY TURNING OUT

Push Cart Outfit No. 1
Material
2 Steel Beams, 11 holes
6 Steel Beams, 4 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
1 Shaft, $3 \frac{3}{4}$ in
2 Wagon Wheels
12 Bolts and Nuts
handle use 5 hole beam
in place of $21 / 2$ in shaft as shown.

Small Wagon, Outfit No. 1 material
2 Steel Beams, 11 holes + Steel Beams, 5 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
2 Shafts, $3^{3 / 4} \mathrm{in}$.
4 Wagon Wheels
11 Brackets
1 Long Bolt
20 Short Bolts

3 Hangers

22 Nuts

Structo is the Last Word in "Real Toys" Short Bolts $\quad 22$ Nuts

Express Wagon, Outfit No. 2. material

2 Steel Beams, 11 holes	2 Angle Plates, $1 \times 5 \times 11$ holes
1 Steel Beam, 9 holes	3 Hangers
3 Steel Beams, 7 holes	10 Brackets
4 Steel Beams, 4 holes	2 Shafts, $43+$ in.
1 Steel Beam, 2 holes	4 Wagon Wheels
2 Angle Plates, $1 \times 3 \times 9$ holes	32 Bolts and Nuts

Swing, Outfit No. 2

MATERIAL
4 Steel Beams, 25 holes
4 Steel Beams, 7 holes
4 Steel Beams, 5 holes
2 Steel Beams, 11 holes
2 Steel Beams, 9 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
1 Angle Plate, $1 \times 5 \times 11$ holes
5 Angle Brackets
1 Hank Cord
30 Short Bolts and Nuts
2 Long Bolts and Nuts

STRUCTO Is a Noiseless Pastime

Drill Press, Outfit No. 2
MATERIAL
1 Steel Beam, 11 holes
1 Steel Beam, 9 holes
3 Steel Beams, 7 holes
2 Steel Beams, 2 holes
1 Angle Plate, $1 \times 5 \times 11$ holes
2 Angle Plates, $1 \times 3 \times 9$ holes
2 Pulleys, 1 in.
1 Spider Wheel
4 Collars
1 Clevis
10 Angle Brackets .
1 Shaft, $4^{3}+\mathrm{in}$.
1 Shaft, $2^{1 / 2} \mathrm{in}$.
1 Crank Shaft, 4 in.
1 Long Bolt and Nut
21 Short Bolts and Nuts

Power Hack Saw, Outfit No. 2 MATERIAL
1 Steel Beam, 7 holes
5 Steel Beams, 5 holes
4 Steel Beams, 4 holes
2 Steel Beams, 3 holes
2 Angle Plates, $1 \times 5 \times 11$ holes
1 Shaft, 43 in .1 Crank Shaft, 4 in .
1 Spider Wheel 2 Pulleys, 1 in.
1 Wagon Wheel 8 Angle Brackets
2 Collars 2 Hangers
2 Long Bolts and Nuts
29 Short Bolts and Nuts

USE 7 HOLE BEAM FOR SAW BLADE OR MAKE SAW BLADE OF CARD BOARD

Emery Grinder
Outfit No. 2
material
4 Steel Beams, 25 holes 2 Steel Beams, 11 holes 2 Steel Beams, 9 holes

4 Steel Beams, 7 holes
3 Steel Beams, 3 holes
2 Angle Plates, $1 \times 5 \times 11$ holes
1 Spider Wheel
1 Wagon Wheel
2 Pulleys, 1 in.
2 Collars
1 Shaft, $21 / 2 \mathrm{in}$.
1 Crank Shaft
1 Hanger
10 Angle Brackets
2 Long Bolts and Nuts 30 Short Bolts and Nuls

Speed Lathe

 Outfit No. 2MATERIAL
2 Steel Beams, 11 holes 1 Steel Beam, 7 holes

4 Steel Beams, 5 holes
4 Steel Beams, 4 holes
1 Steel Beam, 3 holes
1 Spider Wheel
2 Wagon Wheels
2 Pulleys, 1 in
4 Collars
3 Hangers
11 Angle Brackets
2 Angle Plates, $1 \times 5 \times 11$ holes
1 Shaft, $4 \frac{3}{4}$ in.
1 Shaft, $1 / 1 / 2 \mathrm{in}$.
1 Crank Shaft, 4 in.
2 Long Bolts and Nuts
30 Short Bolts and Nuts

Structo Illustrates Perfect Rules for All Mechanics

Shaper, Outfit No. 3

MATERIAL

Structo Leads the Mind to New Inventions

Page 14

1 Angle Plate, $1 \times 5 \times 11$ holes	9 Angle Brackets
2 Angle Plates, $1 \times 3 \times 9$ holes	1 Crank Shaft, 4 in.
2 Steel Beams, 11 holes	1 Shaft, $11 / 2$ in.
1 Steel Beam, 9 holes	1 Spider Wheel
4 Steel Beams, 5 holes	1 Pulley 1 in.
4 Steel Beams, 4 holes	1 Spur Gear, $11 / 2 \mathrm{in}$.
4 Steel Beams, 3 holes	1 Spur Gear, $1 / 2 \mathrm{in}$.
1 Steel Beam, 2 holes	1 Collar
3 Hangers	
1 Clevis	
	20 Short Bolts and Nuts

Gas Engine, Outfit No. 3 MATERIAL

2 Steel Beams, 11 holes
1 Steel Beam, 9 holes
${ }_{2}$ Steel Beam, 9 holes
2 Steel Beams, 6 holes
7 Steel Beams, 5 holes
4 Steel Beams, 3 holes
4 Steel Beams, 2 holes
2 Wagon Wheels
2 Pulleys, 1 in.
2 Hangers
2 Hangers
8 Angle Brackets
8 Angle Brackets
1 Crank Shaft, 4 in
1 Crank Shaft, 4 in
34 Bolts and Nuts
2 Angle Plates $1 \times 5 \times 11$ holes
1 Engine Crank Shaft

USE HAIR PIN OR WIRE TO SUPPORT CONNECTING ROD

Geared Punch Press
Outfit No. 3

MATERIAL

4 Steel Beams, 7 holes
6 Steel Beams, 5 holes
4 Steel Beams, 4 holes
4 Steel Beams, 2 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
2 Angle Plates, $1 \times 5 \times 11$ holes
1 Hanger
10 Angle Brackets
4 Collars
2 Pulleys, 1 in.
1 Pulley, $1 / 2$ in.
1 Wagon Wheel
1 Spur Gear, $11 / 2 \mathrm{in}$.
1 Spur Gear, $1 / 2$ in.
1 Shaft, $4 \frac{3}{4}$ in.
1 Shaft, $1 / 1 / 2$ in.
1 Crank Shaft, 4 in.
2 Long Bolts and Nuts
30 Short Bolts and Nuts
1 Engine Crank Shaft

Milling Machine
Outfit No. 3
material
1 Steel Beam, 11 holes 1 Steel Beam, 9 holes 1 Steel Beam, 5 holes 1 Steel Beam, 3 holes 1 Steel Beam, 2 holes
1 Plate, $1 \times 3 x 9$ holes
2 Plates, $1 \times 5 \times 11$ holes 14 Angle Brackets
1 Shaft, $4^{33_{4}}$ in.
1 Crank Shaft, 4 in.
1 Crank Shaft, 6 in.
2 Pulleys, 1 in.
1 Spur Gear, $1 / 2$ in.
3 Collars
27 Short Bolts and Nuts

Commerce now Demands
High Class Engineers

Hand Car, Outfit No. 4
material

2 Steel Beams, 11 holes

2 Steel Beams, 9 holes
3 Steel Beams, 7 holes 2 Steel Beams, 6 holes
4 Steel Beams, 5 holes
4 Steel Beams, 2 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
1 Spider Wheel
1 Spur Gear, 3 º in.
1 Spur Gear, 1 y/2 in.
6 Collars
16 Brackets
2 Shafts, 43/4 in.
1 Shaft, $3^{3} 4 \mathrm{in}$.
1 Shaft, $21 / 2$ in.
4 Car or Wagon Wheels
38 Short Bolts and Nuts
1 Long Bolt and Nut

Drill Press, Outfit No. 4
MATERIAL
2 Angle Plates, $1 \times 5 \times 11$ holes
1 Angle Plate, $1 \times 3 \times 9$ holes
1 Angle Girder, $121 / 2$ in.
1 Steel Beam, 15 holes
2 Steel Beams, 9 holes
1 Steel Beam, 6 holes
4 Steel Beams, 5 holes
4 Steel Beams, 3 holes
19 Brackets I Spider Wheel
1 Shaft, 6 in. 3 Pulleys, $11 / 2$ in.
1 Shaft, $43 \underset{+}{3}$ in. 2 Pulleys, 1 in .
2 Shafts, $11 / 2$ in. 1 Spur Gear, $1 / 2 \mathrm{in}$.
1 Crank Shaft 1 Crown Gear, $3+$ in.
12 Collars 34 Bolts and Nuts

Aerial Fire Truck

Outfit No. 4
material
8 Angle Girders $121 / 2$ in. 4 Steel Beams, 25 holes
1 Steel Beam, 9 holes
6 Steel Beams, 7 holes
6 Steel Beams, 6 holes
8 Steel Beams, 5 holes
6 Steel Beams, 4 holes
4 Steel Beams, 2 holes
3 Steel Beams, 3 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
2 Shafts, $43 / 4 \mathrm{in}$.
2 Shaffs, 33_{4} in.
1 Shaft, $21 / 2$ in.
2 Crank Shafts
1 Pawl
2 Spur Gears, $1 / 2$ in.
3 Pulleys, 1 in.
1 Pulley, $1 / 2 \mathrm{in}$.
1 Pulley, $1 / 2$ in.
1 Spur Gear, $11 / 2$ in.
2 Grown Gears
1 Worm
6 Collars
2 Spider Wheels
4 Wagon Wheels
20 Angle Brackets
1 Hank Cord
2 Hangers
70 Short Bolts and Nuts
5 Long Bolts and Nuts

The device for lowering and raising ladder is arranged by placing crank shaft through the two angle girders as shown. The crank shaft should support one collar in the center. Fasten Cord to center of five hole on the bottom section and to the set screw on the crank shaft collar.

A $1 / 2$ inch spur gear should be fitted on the crank shaft as shown and by fastening pawl two holes distant, will enable the holding of the ladders in various positions.

The body of this model is composed of 4 Angle Girders, 4 Beams, 26 holes, 4 Beams 7 holes. Bolt 2 Beams, 7 holes, in virtical position on the 25 hole beams, letting the 7 hole beams extend below 4 holes. Then insert $3^{3 / 4}$ inch shaft into the second hole from the bottom of the 7 hole beam; slip on wagon wheels and the rear trucks are completed.

To construct auto worm steering device refer to page 34 for details. beam on top section.

The sectional aerial ladders are constructed with 4 Angle Girders as shown. The upper section is bolted together on top with two 5 hole beams; the lower section on the back with two 7 hole beams. On the top of the bottom ladder bolt two Angle Brackets in the center of the 5 hole beam, leaving one hole between Brackets. Insert long bolt through $1 / 2 \mathrm{in}$. pulley for bearing. After constructing Crank Shaft with two 1 in . pulleys for collars, and $11 / 2 \mathrm{in}$. pulley for drive, fasten one end of string to 5 hole bearn on bottom of top laader, running string around $1 / 2 \mathrm{in}$. pulley and $1 / 2 \mathrm{in}$. pulley and fasten to 5 hole

Structo Supplies the Greatest Variety of Material
\square

Structo Material is Most Comprehensive

Metal Planer
Outfit No. 4
material
4 Steel Beams, 6 holes 2 Steel Beams, 4 holes 2 Steel Beams, 4 holes 1 Flat Plate, 4×9 holes 1 Flat Plate, 6×11 holes 2 Angle Plates, $1 \times 3 \times 9$ holes 2 Angle Plates, $1 \times 5 \times 11$ holes 1 Clevis
${ }_{3}$ Clev1s
14 Angle Brackets
1 Spur Gear, $1 / 2$ in
1 Spur Gear, $1 / 2$ in.
1 Spur Gear, $1 / 2$
1 Spider 4
1 Chaft, $21 / 2$ in
1 Crank Shaft, 4 in.
1 Crank Shaft, 6 in.
40 Short Bolss and Nuts
2 Long Bolts and Nuts

Automobile Truck, Outfit No. 4

material

4 Angle Girders, $121 / 2$ in. 4 Steel Beams, 25 holes
3 Steel Beams, 9 holes 3 Steel Beams, 7 holes 6 Steel Beams, 6 holes 8 Steel Beams, 5 holes 3 Steel Beams, 4 holes 4 Steel Beams, 3 holes 4 Steel Beams, 2 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
2 Angle Plates, $1 \times 5 \times 11$ holes 2 Hangers
2 Shafts, $3^{3 / 4}$ in.

2 Shafts, $4^{3 /+} \mathrm{in}$.
1 Shaft, $21 / 2 \mathrm{in}$.
1 Spur Gear, $11 / 2 \ln$.
1 Spur Gear, $1 / 2$ in.
2 Crown Gears, $3+\mathrm{in}$.
1 Worm
1 Spider Wheel
4 Wagon Wheels
22 Angle Brackets
5 Collars
70 Short Bolts and Nuts
2 Long Bolts and Nuts

Pile Driver
Outfit No. 4
material
4 Angle Girders, $12 \frac{1}{2}$ in 2 Steel Beams, 15 holes 2 Steal Beams, 7 holes 2 Steel Beams, 11 holes 8 Steel Beams, 5 holes 4 Steel Beams, 3 holes 2 Steel Beams, 2 holes 2 Plates, $1 \times 5 \times 11$ holes 2 Plates, 1x3x9 holes
3 Hangers
2 Shafts, $3^{3 / 4} \mathrm{in}$.
2 Shafts, $43 / 4 \mathrm{in}$.
1 Shaft, $21 / 2 \mathrm{in}$.
1 Crank Shaft, 4 in.
1 Clevis 1 Hook 4 Wagon Wheels
2 Spider Wheels
1 Spur Gear, 1 $1 / 2 \mathrm{in}$.
2 Spur Gears, $1 / 2$ in.

The ronstruction of this car is simple. The length of the car is 25 holes, and the width is 9 holes. The ends of the car are made by bolting 1 Angle Plate, $1 \times 5 \times 11$, to 1 Angle Plate, $1 \times 3 \times 9$, and 1 Flat Plate, $1 \times 4 \times 10$, to form a rectangular, 9×11 holes, as shown. The brake is made by inserting 1 Shaft, 8 in . through Angle Bracket and 5 hole Beam, located on end of car. This forms the brake rod. Fasten the lower end of brake rod to Collar. On the rear axle of the car fasten one end of Cord, and the other end to the collar on the brake rod. On top of car, in line with the brake rod fasten 1 Steel Beam, 5 holes, letting 1 hole extend beyond end of car. Fasten to top of beam 1 Pawl. After fitting on the brake rod 1 Spur Gear, $1 / 2$ in., let the same engage the Pawl. Fit on top of brake rod, 1 Spider Wheel. By turning spider wheel the tension of the cord is increased forming brake.

Stock Car

Outfit No. 4
MATERIAL
6 Angle Girders, $121 / 2$ in. 8 Steel Beams, 25 holes 4 Steel Beams, 11 holes 4 Steel Beams, 9 holes 2 Steel Beams, 7 holes 4 Steel Beams, 6 holes 6 Steel Beams, 5 holes 6 Steel Beams, 4 holes 4 Steel Beams, 3 holes 1 Plate, 4×9 holes 1 Plate, 6×11 holes
2 Plates, $1 \times 5 \times 11$ holes 2 Plates, $1 \times 3 \times 9$ holes
2 Hangers
1 Pawl
10 Brackets
1 Shaft, 8 in.
2 Shafts, $43 / 4$ in.
1 Spider Wheel
1 Spur Gear, $1 / 2$ in.
4 Wagon or Car Wheel ${ }^{\text {s }}$
1 Collar
1 Clevis
75 Bolts and Nuts

Flying Swing, Outfiṭ No. 5
material
2 Angle Plates, $1 \times 3 \times 9$ holes
2 Angle Plates, $1 \times 5 \times 11$ holes 4 Angle Girders, 121/2 in. 4 Steel Beams, 25 holes 4 Steel Beams, 15 holes 4 Steel Beams, 15 holes
9 Steel Beams, 11 holes
Structo Stimulates Thought and Observation

Horizontal Engine, Outfit No. 5
material

2 Angle Girders, 121/2 in.
6 Steel Beams, 25 holes
1 Steel Beam, 15 holes
9 Steel Beams, 11 holes
2 Steel Beams, 6 holes
6 Steel Beams, 5 holes

9 Steel Beams, 4 holes
8 Steel Beams, 3 holes
4 Steel Beams, 2 holes
2 Angle Plates, $1 \times 3 \times 9$ holes
1 Angle Plate; $1 \times 5 \times 11$ holes
1 Flat Plate, 4×9 holes

2 Spider Wheels

1 Grooved Pulley, $11 / 2$ in.
1 Grooved Pulley, 1 in.
2 Grooved Pulleys, $1 / 2$ in
2 Hangers
1 Crank Shaft
1 Shaft, 6 in.
1 Shaft, $3^{3 / 4}$ in.
1 Shaft, $1 \frac{1}{2}$ in.
8 Collars
40 Brackets
105 Short Bolts and Nuts
2 Long Eolts and Nuts

Production is the Greatest Pleasure and Structo Provides the Means

Page 30 Complete Working Model of a Bascule Bridge, Known as the Scherzer Rolling Lift Bridge

Working with STRUCTO Teaches Observation

Details of Power Mechanism Shown on Page Thirty-two

Practical Education is
 The Foundation of Success

Bascule Bridge and Gear Drive
mechanical principles are followed in this model and it operates perfectly. The dimensions of this model can be easily determined by any one, simply by counting the holes in the beams used, each hole reprasenting one-half inch. The gear operating this bridge is shown in detail in figure 17. The power is connected to the lifting span by a cable from the winding drum.

The cable is attached jto the center of the top of the lifting span and is covered by U-shaped beam made from two No. 62 angle girders bolted together and attached to the frame work near the gear. The other end of the beam is not fastened to the lifting span, but slides forward on the guide rail when the bridge is open, as shown on page 30.

2 Steel Beams, 25 holes
24 Steel Beams, 19 holes 34 Steel Beams, 15 holes 79 Steel Beams, 11 holes 17 Steel Beams, 9 holes 17 Steel Beams, 7 holes 7 Steel Beams, 6 holes 9 Steel Beams, 5 holes
10 Steel Beams, 4 holes
14 Angle Girders, $121 / 2$ in.
2 Angle Girders, $51 / 2$ in.
8 Angle Plates, $1 \times 5 \times 11$ holes

100 Brackets

12 Collars
2 Shafts, $4^{3 / 4}$ in.
1 Shaft, $21 / 2$ in.
4 Shafts, $11 / 2$ in.
1 Crank Shaft
1 Spur Gear, 1 in.
1 Spur Gear, $1 / 2$ in.
1 Spur Gear, $3 / 4$ in.
1 Worm
2 Spider Wheels
1 Hook
16 Steel Beams , 3 holes
16 Steel Beams, 2 holes
1 Hank Cord
388 Short Bolts
11 Long Bolts
399 Nuts

Small Merry-Go-Round, Outfit No. 5
material
6 Angle Girders, $121 / 2$ in. 10 Steel Beams, 7 holes 1 Shaft, $111 / 2 \mathrm{in}$. 1 Crank Shaft, 6 in. 10 Steel Beams, 25 holes 10 Steel Beams, 25 holes 8 Steel Beams, 11 holes

4 Steel Beams, 5 holes 8 Steel Beams, 4 holes,
2 Spider Wheels
1 Hanger
1 Hanger
1 Angle Plate, $1 \times 3 \times 9$ holes

Illustration shows the general construction of this model. First construct the base by bolting together 6 Angle Girders, $12^{1 / 2}$ in. as shown. On outer end of base at right angles with the two center angle girders bolt 1 Angle Plate, $1 \times 3 \times 9$ holes. The angle plate forms the outer bearing for the crank shaft. Next construct the inner frame. Locate on the two center angle girders 12 holes from angle plate 1 Steel Beam, 9 holes. This forms the bearing for the center pole. This Angle Plate also forms the center line of the inner frame. From this center line count each way 5 holes and fasten to inside of center angle girders 4 angle brackets and connect them with two 7 hole beams. Then bolt 4 steel beams, 11 holes in vertical position as shown and tie them together at the top with 4 steel beams, 7 holes. To form the upper bearing for the center pole, bolt 1 steel beam, 7 holes across top of frame and fasten to this 7 hole beam, 1 spider wheel as shown. Care should be taken that the set screw of the spider wheel is removed as the center pole revolves within it. After constructing the base and inner frame, the bearing supporting the crank shaft should be made by bolting across the inner frame, one 7 hole beam and attaching it two holes from the base. On the 7 hole beam bolt one hanger. Insert one long crank shaft through angle plate, $1 \times 3 \times 9$ holes and through 7 hole beam and hanger with collars located on each side of hanger and I spur gear, $1 / 2$ in., fitted on to the end of crank shaft. On the center pole of the merry-go-round fit 1 crown gear, $\frac{3}{4}$ in.. and have it mesh with 1 gear, $1 / 2$ in. This forms the driving gear for the revolving platform. To construct the revolving platform proceed as follows: The upper and lower inner circles are made by bending two 25 hole beams and bolting them together lapping them 5 holes, tie them together with 4 steel beams, 9 holes as shown. The upper and lower outer circles are made by bolting together three 25 hole beams, lapping two ends 3 holes and one end 2 holes. Tie the two outer circles together with 4 steel beams, 9 holes. The top of the revolving platform is formed by bolting four 11 hole beams edgewise unto 4 angle brackets that in turn should be bolted to flat side of spider wheel. Fit this spider wheel with the beams attached onto the center pole and connect outer ends of beams to the
inside of the upper outer circle. If the builder wishes to lace up the top of this machine, locate on the center pole, 1 crown gear, $3 / 4$ in., with the teeth up and lace back and forth from the upper outside circle through the crown gear. Seats are made with two steel beams.
4 holes, six angle brackets and one 6 hole beam.
The 6 hole beam forms the foot rest and the two 4 hole beams forms the seat and the back.

Structo Building is Noiseless

1 Crown Gear, ${ }^{3+}$ in 1 Spur Gear, $1 / 2$ in. 3 Collars
48 Brackets
108 Bolts and Nuts

A Structo Outfit is the Alphabet of All Mechanical Arts

Large Windmill
Outfit No. 6
MATERIAL

12 Angle Girders, $121 / 2$ in.	1 Crank Shaft
8 Steel Beams, 25 holes	1 Spur Gear, 1 in.
8 Steel Beams, 19 holes	1 Spur Gear, 3_{4} in.
7 Steel Beams, 15 holes	1 Sprocket, 1 in.
12 Steel Beams, 9 holes	1 Sprocket, 2 in.
5 Steel Beams, 7 holes	4 ft . Chain
12 Steel Beams, 5 holes	1 Grooved Pulley, $11 / 2 \mathrm{in}$.
8 Steel Beams, 2 holes	1 Spider Wheel
1 Shaft, $11 \frac{1 / 2 \mathrm{in} \text {. }}{}$	9 Collars
1 Shaft. 6 in.	26 Angle Brackets
1 Shaft, $3 \frac{3}{4}$ in	145 Short Bolts and Nuts

MAKE WINDMILL BLADES OF CARDBOARD

The frame work of this windmill is constructed of twelve Angle Girders, $12 \frac{1}{2} \mathrm{in}$. The height is measured by bolting three Angle Girders, $121 / 2$ in., together, allowing each girder to lap the other 2 holes. Lateral braces consist of eight 25 hole beams, eight 19 hole beams and four 15 hole beams, bolted as shown. The base of the frame is determined by bolting four 15 hole beams to angle girders 8 holes from the base.

Derrick with Walking Beam Engine Outfit No. 6

MATERIAL

1 Angle Girder, $51 / 2 \mathrm{in}$. 14 Angle Girders, $121 / 2$ in.
10 Steel Beams, 25 holes
6 Steel Beams, 15 holes
9 Steel Beams, 11 holes
3 Steel Beams, 7 holes

7 Steel Beams, 6 holes
6 Steel Beams, 5 holes
10 Steel Beams, 4 holes
10 Steel Beams, 3 holes
5 Steel Beams, 2 holes
2 Flat Plates, 6×11 holes

2 Flat Plates, $4 x 9$ holes
2 Angle Plates, $1 \times 3 \times 9$ holes
1 Angle Plate, $3 \times 3 \times 11$ holes
2 Angle Plates, $1 \times 8 \times 4$ holes
1 Angle Plate, $1 \times 5 \times 11$ holes
2 Shafts, $1 / 2 \mathrm{in}$.
2 Shafts, $3^{3}+\mathrm{in}$.
1 Shaft, $4^{33}+\mathrm{in}$.
Shaft, 6 in
2 Shafts, 8 in.
1 Crank Shaft
1 Sprocket, 2 in
1 Sprocket, I in
2 Spider Wheels
2 Crown Gears, $3 / 4$ in
1 Spur Gear, $1 / 2$ in
2 Spur Gears, ${ }^{3}+\frac{\text { in }}{}$.
1 Spur Gear, 1 in.
1 Wagon Wheel
1 Grooved Pulley

15 Collars
1 Coil Spring
1 Cable Cord
1 Pawl
1 Clevis
I Hook
31 Brackets
174 Bolts and Nuts EXTRA MATERIAL

Page 37
1 Flat Plate, 6x11 holes
2 Flat Plates, 4 x 9 holes
1 Crown Gear. $3 / 4 \mathrm{in}$.

Structo Building leads

 to Perfection in Mechanics

Large Merry-Go-Round, Outfit No. 6

material

9 Angle Girders, 12 /2 in. 1 Crank Shaft
1 Shaft, 3 $3 / 4 \mathrm{in}$.
1 Shaft, 6 in.
4 Shafts, 8 in.
2 Shafts, $11 / 2 \mathrm{in}$.
1 Shaft, $11 \frac{1}{2}$ in.
1 Shaft Coupling
39 Steel Beams, 25 holes 9 Steel Beams, 19 holes 8 Steel Beams, 15 holes 16 Steel Beams, 11 holes 2 Steel Beams, 9 holes 1 Steel Beam, 7 holes 4 Steel Beams, 4 holes 8 Steel Beams 3 holes

4 Steel Beams, 2 holes 4 Hangers
16 Collars
3 Crown Gears, 158 in.
1 Sprocket, 2 in.
1 Sprocket, 1 in.
1 Spur Gear, 1 152 in.
6 Spur Gears, $1 / 2$ in.
7 Spider Wheels
3 ft . Sprocket Chain
15 Angle Plates, $1 \times 3 \times 9$ holes
1 Angle Plate, 4×9 holes
254 Bolts and Nuts
76 Angle Brackets
1 Coil Spring

EXTRA MATERIAL

2 Shafts, 8 ir.		$8{ }^{\circ}$	- -	\$. 16
23 Steel Beams, 25 holes			per dozen	1.00
1 Steel Bcam, 19 holes	(0)	5	- -	. 05
1 Crown Gear, 1 洛 in.	(10)	25	- -	25
4 Spur Gears, 1 in.	(1)	20	- -	80
4 Spider Wheels	(11)	10	- -	40
11 Angle Plates, $1 \times 3 \times 9$ holes	(1)	7%	- -	. 77
16 Angle Brackets	(ब) 10° per dozen			. 20
1 Shaft Coupling	(10) $10{ }^{\circ}$		- -	. 10
			\$3.73	

HORSES AND DOLLS NOT FURNISHED WITH OUTFITS

LARGE MERRY-GO-ROUND, OUTFIT No. 6

THE INSIDE FRAME The inside frame is stationary and assists in suppcrting it:e revolv-merry-go-round consists of four ing platiorm. The material required to construct this part of the circle. The circumfierence of these circles are detcrmined as follows: At the point on the sup-
porting frame where the 25 hole beam intersects the third girder count 9 holes porting frame where the
and beam and bolt angle brackets with vertical bracket outside. Bend 19 hole beams around angle brackets at the same time bolt four beams 11 holes to brackets forming vertical supports for upper circle. The top inside of frame is made by bolting four beams 11 holes to flat surface of spider. Bend beams downward so that after they are fastened to upper circle spider wheel will be $21 / 4$ inches above top circle.

REVOLVING PLATFORM We would suggest that the revolving truss as this is not necessary, only adds to to the appearance. Howevere if the truss as this is not necessary, only adds to the appearance. However, if the
builder wishes to incorporate this into the model, he will proceed as follows: Bolt eight 25 hole beums to flat surface of spider wheel, and after the lower truss is constructed bend down to lower truss and fasten four holes from outside end. A duplicate of the upper truss forms the lower truss. Bolt angle brackets allernalety on the under side of 25 hole beams. 4 holes from center spider wheel. These brackets form the circumference of volving plafform count it holes out from center on 25 hole beams, and bolt angle brackets with the vertical bracket inside.

Then bolt four 25 hole beams bending them around and fastening to inside of angle brackets. The lower circle consists of the same number of
25 hole beams bent around and fastened to inside of vericul supports. 25 hole beams bent around and fastened to inside of verical supports.
The vertical supports for the inside circle consists of eight 15 hole beams bolted to upper and lower circles as shown in illustration. To form the outside circumference of the revolving plariform, boit angle brackels on
ouler end of the 25 hole beams as shown, hen bend and latien seven 25 hole beams to the angle brackets. This forms the upper outside circumperence. The lower oulside circumference is formed by boling eight 11 hole beams horizontally to angle brackers located on the lower inner circle as shown. Angle brackets should then be bolied to outer end of the 11 hole
beams and seven 25 hole beams bent and fastened to anple brackets. The upper and lower circles should be tied together with eight 15 liole beams bolted in posilion as shown in illustration.

DRIVING GEAR Bolt three angle plates, $1 \times 3 \times 9$ holes, to flat plate, 4×9 holes, in position the for plate is under as shown, forming housing, 5 holes wide. Care should be taken that the flat plate is under angle plates. The bearing for the 1 inch sprocket consists of two hangers bolted together with 7 hole beam. The 7 hole beam should be under top of hangers. Bolt this
bearing lengthwise in the center of housing as shown. Undernealh this bearing place one crown bearing Iengthwise in the center of housing as shown. Underneath this bearing place one crown
prear, I $\$ 8$ in., hub down. In the center hole of housing and bearing insert key sealed shaft, $1 / 2$ in., vertically. On the top of this shaft fit one sprocket, 1 in., hub down, tighten set screws on sprocket and crown gear and be sure that the set screws engage the key, seat. In the top hole of housing insert one shaft, $31 /$ in. On this shaft fit one spur gear, $1 / 3 /$ in. This shaft must be located at right angles with the 1 in . shaft and the spur gear $1 \frac{1 / 2}{}$ in. must
engage the crown gear, 1% in. Insert crank shaft as shown with one gear engage the crown gear, 1/in. Insert crank shaft as shown with one gear,
$1 / 2$ in., let this gear mesh with spur gear, $1 / 2 \mathrm{in}$. Tighten all set screws and

SUPPORTING FRAME To construct frame work that forms the base proceed as folrectangle 46 holes lond, and 25 hows: Nine angle girders should be bolted together to form a placed as follows: Girder No. 1, seven holes from end. This girder together with the end girder support for driving gear. Girder No. 2, twenty-two holes from the end. Girder No. 3 ihirty-four holes from end.

One 25 hole beam can then be bolted lengthwise in the center of the frame from the center hole upon Girder No. 2 to the end girder opposite driving gear.

CENTER POLE GEAR HOUSING driving mechanism is completed.

MERRY-GO-ROUND SEATS Very litle instruction is needed required corsists of three angle plates, $1 \times 3 \times 9$ moles, bolited 1 together and fasiened to vericical supports as shown. The cenler pole of the merry-go-merry-go-round through center spider on top of inside frame and through the intersection of the 25 hole beam and the third girder upon the base. On the shaft at the bottom should be fitted one sprocket, 2 in., and at the top of the shaft directly over top of inside frame should be fitted one crown gear, 15 a in. Care should be taken that the sel screw in the spidcr on top
of the inside frame is not fastened to shaftina. The shaft must be allowed to revolve freely in this spider wheel.

THE CENTER POLE GEAR HOUSING if the builder ueboard horses or buy sires to make carc platform with oscillating device for rocking them, proceed as follows: First construct the center pole houssing and observe carefilly the illustration- 10
the angle brackets bolted 4 holes out from the cenner of the 25 hole the angle brackets bolted 4 holes out from the center of the 25 hole beams
forming top of revolving platorm, fasten to ench angle bracket, one 4 hole beam vertically, then bend one 19 hole beam into a circle lapping it three holes and fastening it to the inside of the vertical 4 hole beams. This completes the housing. and the builder is now ready to make the oscillating device. By observing the illusiration the builder will note that the oscillating
device is built with four shafis, 8 in. These shafts are inserted through the device is built with four shafts, 8 in. These shafts are inseried through the
second hole from top of vertical supporl on inner circle of revolving platsecond hole from top of vertical support on inner circle of revolving platform. The other end of shaft is inserted through center hole on center pole gear housing and on ear housing and the other on the inside of the vertical support. This holds the shaft in position. Upon the outer end of the four shafls fit spider wheel with the flat surface oulside, then mount horses on revolving platform as shown, and connect them to spider wheel on oscjlating device
with fine wire or sister's hairpins. Merry-fo-round is now complete, ready for operation, with the exception of mounting the driving chain from the 2 in. sprocket localed up on the center pole of merry-go-round 101 in . sprocket located in the driving gear. Alter this is done, by turning the crank, the merry-go-round will revolve. This is a model that is really worth while consiructing
even though the builder does not want to mount horses, he will find the model worth attempting.

Ferris Wheel, Outfit No. 6, with Structo Chain Drive

To construct this model build supporting frames first. These frames are made of eight Angle Girders; $12 \frac{1}{2}$ in. long. The vertical angle girders near the wheel are lapped together making one angle girder, 36 holes long. The inclined angle girders forming the outside of the frame should be lapped together making one angle girder, 37 holes long. The two supporting frames should be bolted to the base as shown in illustration. The base is com-

MATERIAL

24 Angle Girders, 121/2 in
38 Steel Beams, 25 holes
4 Steel Beams, 19 holes
16 Steel Beams, 11 holes
8 Steel Beams, 9 holes
12 Steel Beams, 7 holes
4 Steel Beams, 5 holes
8 Steel Beams, 3 holes
1 Shaft, $11 / 1 / 2 \mathrm{in}$.
4 Shafts, $4^{3} / 4$ in.
1 Shaft, 334 in.
${ }_{4}$ Crank Shaft, 4 in.
4 Spider Wheels
1 Sprocket, 2 in.
2 Sprockets, I in.
1 Spur Gear, $1 / 2 \mathrm{in}$.
1 Spur Gear, $1 / 2$ in.
2 Angle Plates, $1 \times 5 \times 11$ hole
1 Angle Plates, 6×11 holes
12 Angle Plates, $1 \times 3 \times 9$ holes 3 ft . Sprocket Chain
280 Bolts and Nuts
80 Angle Brackets
10 Collars
EXTRA MATERIAL
10 Angle Girders, $121 / 2$ in. (® 79 - $\$.70$ 22 Steel Beams, 25 holes © $50 ¢$ per dozen 1.00 1 Spider Wheel
8 Angle Plates, $1 \times 3 x 9$
26 Bolts and Nuts
20 Angle Brackets posed of two angle girders lapped together making the length 39 holes. The width of the base is the length of our regular angle girder, $121 / 2 \mathrm{in}$. The top of the supporting frames should be bolted to the spider wheel with 4 long bolts as shown in illustration. The wheel is easily constructed by proceeding as followsBolt eight 25 hole beams to the inside of spider wheel. In the 15 th hole from the spider wheel on the 25 hole beam, bolt an angle bracket, also fasten an angle bracket in the top hole of the 25 hole beam. This forms the circumference for the outside diameter of the wheel, and the inside angle brackets form the circumference for the inside wheel. Make duplicate of this side and fasten the two wheels together with eight 11 hole beams. The wheel is mounted on frame by inserting into spider wheel key seated shaft, $111 / 2$ in, upon the end of this shaft fit one sprocket wheel, 2 in . in diameter.

The cars are made of three angle plates, $1 \times 3 \times 9$ holes. Two 7 hole beams are bolted flatwise at right angles with the plate that forms the seat. Two angle brackets are then bolted to the upper end of the 7 hole beams through which shaft is inserted with collars forming the support of the car. The housing supporting the driving mechanism is composed of two angle girders, $121 / 2 \mathrm{in}$. long bolted across base. This forms the support for housing which is composed of two angle plates, $1 \times 5 \times 11$ holes, and one flat plate, 6×11 holes. Builder can then arrange the gears by inserting I shaft, $33 / 4 \mathrm{in}$., with gear $11 / 2 \mathrm{in}$., three holes from top, directly over this shaft insert crank shaft supporting $1 / 2 \mathrm{in}$. gear that should crank shaft supporting $1 / 2$ in. gear that should
engage the $11 / 2 \mathrm{in}$. gear. Also fit on this engage the $11 / 2 \mathrm{in}$. gear
shaft one sprocket, 1 in.
haft one sprocket, 1 in.
Builder is now ready to fit the chain upon the sprocket, and after this is done and all set screws are securely fastened by turning the crank, the model will operate.

This model may also be driven by an electric motor

Eiffel Tower, Outfit No. 6

MATERIAL

64 Angle Girders, $121 / 2$ in. 1 Sprocket, 2 in.
14 Angle Girders, $51 / 2$ in, 1 Sprocket, 1 in.
16 Steel Beams, 25 holes 3 Spider Wheels
24 Steel Beams, 15 holes
4 Steel Beams, 11 holes
20 Steel Beams, 9 holes
8 Steel Beams, 7 holes
2 Steel Beams, 6 holes
18 Steel Beams, 5 holes
36 Steel Beams, 4 holes
20 Steel Beams, 3 holes
10 Sreel Beams, 2 holes
1 Crown Gear, $3 / 4 \mathrm{in}$.
3 Angle Plates, $1 \times 5 \times 11$ holes
1 Shaft, $3 / 4 \mathrm{in}$.
2 Shafts, 6 in.
1 Shaft, $111 / 2 \mathrm{in}$.
1 Crank Shaft
8 Collars
2 ft . Sprocket Chain
54 Angle Brackets
2 Cable Cords
287 Bolts and Nuts
2 Pulleys, 1 in.

EXTRA MATERIAL

Angl	(10) 7	\$3.50
10 Angle Girders, $51 / 2$ in.	(1)5 5	. 50
14 Steel Beams, 15 holes	(10)5:	,70
4 Steel Beams, 9 holes	(10) 5 c	. 20
16 Steel Beams, 4 holes	(6) 5°	. 80
4 Steel Beams, 3 holes	(16) 2 for 5 c	10
33 Bolts and Nuts	(1) 10\% per dozen	30

33 Bolts and Nuts
(C) 10% per dozen .30

The arrangement of detail regarding lowering and raising device we will leave to the ingenuity of the builder.

The supporting frame, or the four vertical supports below the second landing, or platform, should be constructed first. Each of the supporting frames are made by bolting 6 Angle Girders, [2 $1 / 2$ in., lapping them 2 holes into position, as shown, connecting them together at the base, with two 7 hole bearns. Tie the four supporting frames together at the top with Angle Girders, $51 / 2$ in., there should be two Angle Girders, $5 \frac{1}{2}$ in. lapped seven holes between each supporting frame. This makes the top of the supporting frame 15 holes wide. Proceed with the erection of the tower by bolting four Angle Girders end to end, lapping them two holes. Duplicate with three more and mount collar on the top of supporting frame. The tower should be tied together with four 11 hole beams nearest the base and then 9 hole beams bolted in position as shown. The crown of the tower is composed of eight 15 hole beams bolted to the spider wheel bent and fastened to top of tower as shown. The construction of the platform is simple and they are fastened to the tower by means of angle brackets bolted to the verticle ribs. The elevator for this tower may be constructed from two flat plates, 6x11 holes, two angle girders $51 / 2 \mathrm{in}$., bolted together at back with one flat plate, 6×11 holes. Elevator guide consists of angle girders, $121 / 2$ in., bolted vertically inside of toyver. Raising and lowering device may be constructed with pulleys located on shafting at the top of the tower, as shown-sprocket and chain drive at base of tower. The winding drum located at base of tower should be in line with the pulleys located at the top.

First construct the base which consists of Two Angle Girders, $12 \frac{1}{2}$ in.. connected with one Flat Plate, 6×11 holes. The flat plate should be bolted in the center of the angle girders lengthwise forming the floor for the engine. Next construct the vertical housing as shown, and on each side of the vertical housing fasten the inclined housing. The inclined housings are formed by bolting one Angle plate, 1x10x6 holes, two Angle Plates, $1 \times 3 \times 9$ holes, as shown. Make a duplicate of this and bolt them into position on each side of vertical housing. The balance of the model may be easily constructed by noting carefully the illustration. This model may be constructed without extra car wheels by fitting axles with four wagon wheels and four car wheels.

STANDARD PRINCIPLES OF ENGINEERING TAUGHT BY STRUCTO

NE of the principle factors of STRUCTO is that the parts are duplicates in miniature of the standard principles used in every day construction. From a practical viewpoint STRUCTO builds models "not toys"-although the models may be used to serve the purpose of "toys" after they are completed. The art of building Structo Models conveys to the builder the correct principles that are applied to the various wagons, autos, windmills, cranes, derricks, etc., which are duplicates in miniature-therefore he becomes familiar with mechanical engineering principles as applied in actual practice.

Building with STRUCTO creates observation and initiative, developing new interest in structural and mechanical engineering principles. STRUCTO often influences boys to take up the study of structural and mechanical engineering seriously.

E HAVE many good treats in store for our engineering corps and friends. In this booklet we have shown but the beginning.

When we say that the possibilities of STRUCTO are practically unlimited, we believe it thoroughly and we have put it to some very hard tests.

Give us your name and address so that we can show you the new models and designs when published.
Each purchaser of STRUCTO is entitled to one membership in our STRUCTO ENGINEERING CORPS.
Page 46 Sign and mail the postal card which we pack with each set and we will keep you advised of the new designs and models that our Experimental Department is constantly turning out.

IMPORTANT

STRUCTO WHEELS AND GEARS will work with all other makes of per-
forated metal beams. If you have such sets we would suggest that you purchase a few pieces of STRUCTO Key-seated Shafting and Gears, as these will greatly increase the value of your old material and models will operate.

The Models Shown in this Booklet are so clear in Detail that it is Not Necessary to Explain What Parts are Used, or How They are Put Together

ONE of the principle factors of STRUCTO is that it creates observation and initiative, and we suggest that you follow the models shown only so far as necessary to become familiar with the various parts and dexterous in handling them.

BOLTS AND NUTS

As building with STRUCTO consists mainly of bolting parts together, the best way to handle these small bolts should be considered.

To Place a Bolt. See that the holes to be used register-that is, that you can see through the hole into which the bolt is to be placed; then hold the nut over this hole with the tip of the forefinger and insert the bolt and turn it until it engages the thread. In other words, place the nut over the hole and turn the bolt into it, instead of putting the bolt through the hole and then trying to screw the nut on to the bolt. For the sake of appearance have the heads of the bolts on the outside of the model so far as possible.

BEAMS AND BRACKETS

The holes in the beams are spaced exactly one-half inch from center to center, and by using Bracket Fir. 1 No. 48 they may be attached to each other at any angle desired. (See Fig. 1)

Fig. 2 shows a pair of No. 15 Angle Plates which may be bolted together to form a small rectangular (Fig. 3), a large rectangular (Fig. 4), or a sector plate as shown in Fig. 5.

These are made with the No. 15 Angle Plate and the same possibilities are true of the large Angle Plate No. 18.

TIG. 6 shows rear axle construction of small wagon, page 7. Two No. 34 hangers, with a bracket, No. 48, attached to the center of each, are fastened under the angle plates as shown, and these provide the bolster support for the rear axle.

Toys Built with Structo are Indestructible

The front axle is more difficult as it must turn on a kingbolt in the center. Use a long bolt, No. 39, for the kingbolt and with it attach a hanger, No. 34, to the front end of bedplate as seen in Fig 6. The kingbolt should have two nuts on it, turned tightly rogether (locknuts), otherwise the turning motion of the vehicle will loosen the bolt.

Next select a beam of desired length and attach to each end a bracket, No. 48, and these brackets provide the bearings for the axle which is passed through them (see Fig. 7), and the wheels put on as usual.

Fig. 7

Fig. 6

Fig. 8

A three-hole beam, fitted with two brackets, No. 48, in the center (see Fig. 8), provides a means for attaching a tongue to the center of the front axle. Note that the brackets clamp under the beam and thus provide rigid supporting ears for the tongue.

A good wagon tongue can be constructed by using two beams and bolting to the outer end two No. 48 Brackets for a finish, as shown in Fig 8 . Spring the rear ends of the beams apart and attach on the outside of the ears mentioned above.

Now attach the front axle to the main bedplate by bolting the No. 34 Hanger, held by the kingbolt, on to the ebeam over the axle, and you have the "running gears" of a vehicle as substantial as the famous "One Hoss Shay."

The building of the superstructure for this type of vehicle we will leave to your imagination, as it consists simply of bolting together any arrangement of beams and plates that may suit your fancy, and the parts shown are suggestive of the greater possibilities.

Teachers of Manual

 Training use StructoThis is the method used for locking swivelling connections. One nut locks the other, making it impossible for either nut to come off the bolt.

RATCHET GEAR

This illustration shows how to arrange the pawl to work in conjunction with $1 / 2$ inch spur gear. This is the arrangement used for holding in place the ladder on the aerial truck.

TWIST BEAM.
One of the new parts not included in Structo outfits. May be purchased by the piece. This facilitates the fastening of wagon tongue to axle supports.

GOVERNOR
This device is used to govern engines. By constructing this model and rotating crank the principle is clearly illustrated.

WAGON TRUCKS

Showing the construction of the axle supports and wagon tongues.

RECIPROCATING MOTION

This device is used for the purpose of transmitting the power from cylinders to shafting.

The Art of Making and Building Is Childhood's First Instinct

Structo Educates and

Trains the Hand and Eye

This device is used as an intermediate unit, for throwing various machines or models in and out of motion.

REVERSE MOTION

By throwing the lever back and forth the motion of the windlass is reversed.

BLOCK AND TACKLE

This device is very much in use in the engineering world. Heavy weights may be easily handled owing to the multiplication of pulleys, which reduce the speed of the operation, but increases the power.

DIFFERENTIAL GEAR

This gear is located upon rear axle of automobiles. Each wheel operates independently of the other, enabling the car to turn sharp corners by allowing one wheel to make more revolutions than the other.

SPEED CHANGES ON:AUTO.

Are clearly illustrated here. By rotating crank and working lever the three speeds are made or the car reversed.

Structo is the Toy

Remember Structo Shafting. Is Key Seated

THIS ILLUSTRATION SHOWS IN PRINCIPLE THE DETAIL ARRANGEMENT USED ON STRUCTO AUTOMOBILES

Auto Worm Steering Gear material
2 Angle Girders, $5 \frac{1}{2}$ in.
2 Steel Beams, 7 holes
1 Steel Beam, 5 holes
1 Shaft, $3^{3}+\mathrm{in}$.
2 Shafts, $43 / 4 \mathrm{in}$.
1 Crown Gear, $\sqrt[3]{4}$ in.
1 Spur Gear, $1 / 2 \mathrm{in}$.
1 Spur Gear, $\frac{3}{4}$ in.
1 Worm
2 Spider Wheels
4 Collars
14 Bolts and Nuts

Structo Speed Multiplier and Reducer

1 Steel Beam, 11 holes	1 Shaft, $11 / 2 \mathrm{in}$.
2 Steel Beams, 6 holes	1 Spur Gear, $11 / 2 \mathrm{in}$.
5 Steel Beams, 5 holes	1 Spur Gear, 1 in.
2 Steel Beams, 3 holes	2 Spur Gears, $3 / 4 \mathrm{in}$.
2 Angle Plates, $1 \times 3 \times 9$ holes	1 Pulley, 1 in.
2 Angle Plates, $1 \times 5 \times 11$ holes	1 Pulley, $11 / 2 \mathrm{in}$.
2 Shafts, $4^{3}+\mathrm{in}$.	8 Collars
1 Shaft, $3^{3 /+} \mathrm{in}$.	20 Short Bolts and Nuts

TO USE W'HEN OPERATING MODEL

STRUCTO DIE CAST SPUR GEARS ARRANGED AS ILLUSTRATED TRANSMIT POWER AT ALMOST ANY SPEED DESIRED, BY CON. NECTING MOTOR CORD TO SMALL PULLEY SPEED OF MODELS IS REDUCED. SPEED OF MODELS IS INCREASED BY CONNECTing motor to large pulley.

Electric Motors

WING TO THE FACT that driven models are in demand, miniature motors, as per cuts, are furnished. These motors are well built, semi-enclosed, variable speed, and are equipped with gears converting excessive speed to power. At the same time, by use of the pulley located upon the armature shaft, the highest speed may be obtained. The gear is equipped with drum pulley from which several articles may be operated at once. Motor operates on a single battery, but greater power and speed can be obtained by the use of two cells. Motor shown in cut " A " should be used for operating continuous running machinery.

"A"

MOTOR shown in cut " B " is also semi-enclosed, is equipped with controller which stops, starts and reverses motor. The rapid reverse of the motor may also be used as a brake. This motor should be connected to such models as Derricks, Cranes, Bascule Bridges, Hoisting Engines-in fact all models requiring reverse operation.

Price of Motor, Type "A"
Price of Motor, Type "B"-Reversible.-.....-.-........................ $\$ 2.50$

Drive your Models by Electric Motors

Price List of Additional Parts

STEEL BEAMS

No. 1	Steel Beams, 25 holes	\$0.05 each	\$0.50 per doz.
No. 2	Steel Beams, 19 holes	. 05 each	44 per doz.
No. 3	Steel Beams, 15 holes	. 05 each	40 per doz.
No. 4	Steel Beams, 11 holes	. 05 each	.35 per doz.
No. 5	Steel Beams, 9 holes	. 05 each	.30 per doz.
No. 6	Steel Beams, 7 holes	. 05 each	.25 per doz.
No. 7	Steel Beams, 6 holes	. 05 each	20 per doz.
No. 8	Steel Beams, 5 holes	. 05 each	20 per doz.
No. 9	Steel Beams, 4 holes.	. 05 each	.18 per doz
No. 10	Steel Beams, 3 holes		16 per doz.
No. 11	Steel Beams, 2 holes		. 14 per doz.
No. 62	Angle Girder, $121 / 2$ inches long	. 07 each	. 60 per doz.
No. 63	Angle Girder, $51 / 2$ inches long	. 05 each	. 40 per doz.

GEARS AND WHEELS

No. 20	Wagon Wheel	\$0.10 each
No. 21	Car Wheel	15 each
No. 22	Pulley, $11 / 2$ inch diameter	15 each
No. 23	Pulley, 1 inch diameter	10 each
No. 24	Pulley, 1/2 inch diameter	. 05 each
No. 25	Spider Wheel	. 10 each
No. 26	Spur Gear, $1 / 1 / 2$ inch diameter	. 25 each
No. 59	Spur Gear, 1 inch diameter	20 each
No. 27	Spur Gear, $3 / 4$ inch diameter	15 each
No. 28	Spur Gear, 1/2 inch diameter	10 each
No. 29	Worm	20 each
No. 30	Sprocket Wheel, 2 inch diameter	25 each
No. 31	Sprocket Wheel, 1 inch diameter	15 each
No. 32	Crown Gear, 158 inch diameter	25 each
No. 33	Crown Gear, $\sqrt{4}_{4}^{4}$ inch diameter	15 each
	SHAFTING	
No. 58	Key Seated Shaft, $111 / 2$ inches long	\$0.10 each
No. 49	Key Seated Shaft, 8 inches long	. 08 each
No. 50	Key Seated Shaft, 6 inches long	. 06 each
No. 52	Key Seated Shaft, 433/ inches long	. 05 each
No. 53	Key Seated Shaft, $33 / 4$ inches long	. 05 each
No. 55	Key Seated Shaft, $21 / 2$ inches long.	. 04 each
No. 56	Key Seated Shaft, $1 / 1 / 2$ inches long	02 each
No. 57	Key Seated Crank Shaft..	. 10 each

No. 58 Key Seated Shaft, $111 / 2$ inches long
10 each
No. 49 Key Seated Shaft, 8 inches long-......................... . 08 each
No. 50 Key Seated Shaft, 6 inches long
52 Key Seated Shaft, 4 + inches long

No. 56 Key Seated Shaft, $1 / \frac{1}{2}$ inches long................................ 02 each
No. 57 Key Seated Crank Shaft ... 10 each

Price List of Additional Parts

MISCELLANEOUS PARTS

No. 34	Hanger- \$0.05 each	(ILLUSTRATED)		
No. 36	Clevis .-..-...---.-.- . 05 each			
No. 37	Pawl	No.	Bent Beams, 5 holes	
No. 38	Hook	No.	Bent Beams, 7 holes	5 each
No. 39	Long Bolt with nut ---- .10 per doz.	No.	Corner Beams-. 2	. 05
No. 40	Short Bolt with nut 10 per doz.		2	. 05
No. 44	Sprocket Chain -...... . 05 per foot	No.	Crank Shafts, 6 ins.	each
No. 45	Cable Cord 05 per hank	No.	Flat Plates, 5×5 holes .-	. 05 each
No. 46	Screw Driver- 10 each		Angle Flates, 1x4x5 holes	. 05 each
No. 47	Steel Wrench .-.-...-. . 10 each	No.	Rack Guide	. 05 each
No. 48	Brackets ..-- .-. .-..-- . 10 per doz.	No.	Gear Rack	. 10 each
No. 60	Shafting Collars_.-.-- . 05 each	No.	Engine Crank Shaft	10 each
No. 64	Coiled Spring-......-- . 05 each	No.	Shaft Couplings	10 each
No. 65	Set Screws..--------. . 10 per doz.		Book of Instructions	15 each

STRUCTO is the only Constructing Outfit that contains Whute Brass Die Cast Gears; Wheels, Pulleys, Sprockets and Pinions. All equipped with set screws, the points of which engage the Key-seated Shafting-this eliminates slippage and assures the positive operation of models.

Structo Toy Model Building Outfits

TRUCTO OUTFITS are arranged in eleven progressive numbers and after you have exhausted the possibilities of STRUCTO Outfit No. 1 by purchasing STRUCTO Outfit No. 1A you will obtain STRUCTO

The STRUCTO gears contained in these outfits are as accurate and substantial as those used in the best and latest heavy machinery and with STRUCTO Keyseated Shaftings practical working models of durable construction are easily made.

STRUCTO Building Material is the last word in present day building toys.

Price List of Outfits

No. 1	STRUCTO	Outfit	:	:	:	:	:	:	:	:	:	:	\$ 1.00
No. 2	"	*	:	:	:	:	:	:	:	:	:	:	2.00
No. 3	.	"	:	:	:	:	:	:	:	:	:	:	3.50
No. 4	"	"	:	:	:	:	:	:	:	:	:	:	5.00
No. 5	*	"	:	:		:	:	:	:	:		:	10.00
No. 6	"	"	:	:		(Highly	Finished	Wood	Box,	with	Lock	and Key)	20.00

Accessory Outfits

No. 1A Containing sufficient parts to convert a No. 1 into a No. 2 Outfit : : : $\$ 1.00$
No. 2A " " " " a No. 2 into a No. 3 Outfit : : : 1.50
No. 3A " " " " a No. 3 into a No. 4 Outfit : : : $\quad 1.50$
No. 4A " " " " a No. 4 into a No. 5 Outfit : : \quad : 5.00
No.5A " " " " a No. 5 into a No. 6 Outfit : : : 10.00

