

GET THIS FINE "GEAR BOOK,"

Trix Book No. 3.

You will find Book No. 3 invaluable. It contains many grand models fitted with TRIX Gears, the finest models in the books! Everything is made easy for you. Book No. 3-remem. ber the number. Be sure to get it.

Gear Set

Add gears to your models! Models so equipped are far more realistic, far more like the real thing. With the TRIX Universal Gear Set you can make a fine start. The Set contains large and small gear wheels in three sizes, and all the necessary parts for making "drives " of many kinds-worm drive, sprocket chain drive, direct gear drive for different speeds, right-angle drive, and many others. Endless gear ratios are possible. The Gear Wheels have a polished brass finish. Full instructions are sent with the outfit. A tractor, a clock, trolley, windmill, fire escape, and even a travelling gantry crane may be made with the aid of TRIX Gears. Be sure to introduce gears into your models.

ALL TRIX COMPONENT PARTS. ACTUAL SIZES.

No. 122. CATTLE WAGON.

Built with two Sets 1, one Set 1a, and two Sets 2a.

Parts Required :

Instructions:

The wheels are constructed as in EC 37 with their axles fixed in vertically mounted F 5's. A P 29 on each side serves as a spacing washer. P 29's are fixed in the centre on the inside of the lower horizontal framework, and on these P 29's the F 17's acting as wheel guards are attached, by means of an S 55 and three N I's. These S 55^{\prime} 's, fixed parallel to one another, are supported with one or two $\mathrm{F} 5^{\circ} \mathrm{s}$ and two sets of locknuts to make the model more rigid. Two A l's placed at the front and the back support the roof. The roof and floor are made of cardboard $7 \frac{1}{8} \times 3 \frac{1}{8}-\mathrm{ins}$. and $6 \frac{3}{4} \times 2 \frac{3}{8}-\mathrm{ins}$. respectively.

*

Parts	Required:			
8	of A 1	11	of	S 55
90	B I	2	"	SU2
16	" F 5	2	"	SUI
16	, F9	4	"	U 1
8	., F13	8	"	U 2
8	, F 17	2	"	U 3
155	.. N 1	4	"	V 35
2	- P 49	4	"	W10
4	- S 25	8	"	W16

Instructions:

The table top rests on four A I's, fastened in the top hole of the vertical F 13's which make the lower frame. On the under side of the two long sides of the table four A l's are fastened. These angles support the vertical sides each made of one F 17 and one F 5. Each short side is made of two U 2's, which are overlapped with an F 9. Two U 3's, bolted vertically on the table top, are supports for the mechanism. The finished head, made of two crossed U I's (with a W 16 between) acts as the bearing for an S 55. This has a $W 16$ on the upper end (see Fig. 3) under which an F9 is placed. On the other end of this F 9, an SU 2 is bolted with an S 55 fixed through the feet, moving in the vertical supports, U 3's. Between these U 3's, lower down, a U 1, with down-turned feet, is fixed (see Fig. 3), to which a U 2, with upturned feet, is bolted. This acts as a bearing for the cam shaft, an S 55 . An SU 1, connected by one foot to the S 55 , serves as the cam. When the pulley, built on the cam shaft as in EC 40, is turned, the horizontal F9, and with the vertical S 55, are, by means of the cam, alternately raised and lowered. The flywheel consists of two P 49's between which two V 35's are fixed as pulleys. The whole is driven between locknuts on an S 25 . Another S 25 serves as crank pin. On the under side of the treadle, two U 2's are bolted and each of these hinges on a securely fixed S 55 at the base of the side supports.
Fig. 3.

No. 140. WEAVING LOOM.

Built with three Sets No. 1, two Sets No. la, one Set No. 2a, and one Packet of Bolts and Nuts.

Description :

This model shows the simplest form of weaving. The long threads or warp are tied on the S 55 of the movable spool. The top threads (alternating with the lower ones) are passed between the F 9 's through the upper holes of the U 3 and over the S 87 . The lower ones are run between the F9's and over the spaced P 29's, which are fixed together on a spindle. By moving the side lever, the loose working frame with one half of the warp is alternately raised and lowered so that it is first above, then below the other half of the threads on the P 29's. With each stroke the transverse thread, which meanwhile has been wound on a piece of cardboard acting as a shuttle, is drawn between the two halves of the warp, first from left to right, and then from right to left. The transverse threads are pushed tightly against each other by a comb.

Parts Required:

51		
12	",	F 5
12	"	F 9
6		F 13
8		F 17
134		N
12	"	P 29
2		P 49
4	"	S 25
10	"	S 55
2		S 87
2		SU1
2	"	SU2
4		U 1
6		U 2
2		U 3

3 Spanners.

Fig. 1.

Nos. 128 and 129. PASSENGER LOCOMOTIVE 4-4-0 TYPE AND TENDER.

Built with four Sets No. 1, three Sets No. 1a, and three Sets No. 2a.

Instructions:

The front and back ends of the boiler consist of P 49's, with five A l's fastened to each, in the upper circumference. The two pairs of F 17's fastened to these A l's connect the back and front and form the sides of the boiler. The top strip is composed of an F 13 and an F 9, and fixed to it are the chimney, made of two U I's, the steam dome, of one U I, and the steam valve, made of an SU I. The two last named are each held by an S 55 . A vertical U 2 is placed on the front end of the boiler, and its lower foot is fastened to a transverse F 13 with an S 55 in the middle hole. This F 13 has horizontal U 2's on each side with spindles through them bearing head lamps and buffer plates. Two F 5's overlapped connect the front feet of these U 2's. Parallel to the F 13 underneath (at a distance of $12 \mathrm{~m} . \mathrm{m}$.) a U 3 with downturned feet is fixed in by two S 55 's to each side of the middle vertical S55. On the inside of the feet of this U 3, two F 9's are fastened horizontally, and on these the wheels, P 29's, run.

TRIX Nos. 128 and 129. PASSENGER LOCOMOTIVE and TENDER.

The F 9's fixed upright on the boiler sides are the bearings for the driving wheels. A horizontal $F 13$ is secured to each of the front F 9's, with one bolt only. The front ends of these F 13's come against the buffer bearings U 2's. Above the F 13's a U 3 is fixed across the boiler, with horizontal F 17's fixed to each of its back turned feet. At the same height as this, a U3 is horizontally secured on the firebox end of the boiler, and holds the two rear ends of the F 17's by means of its feet, and, at the same time vertical F9's acting as the front framework of the cab are fastened to each side. Two more vertical F9's complete the ends of the cab. U 3, which bears the floor ($2 \frac{1}{2} \times 2 \frac{1}{4}-$-ins.) connects these F 9 's and another F9 is fastened in the middle of it, with a U 1 at the end as coupling. The driving wheels are made as in EC 31, but instead of a B 1 , an S 25 acts as crank pin. It is important that the cranks of the opposite sides should be arranged to displace at an angle of 90°. Each pair of driving wheels is coupled together by a spanner, and the front ones are connected to the piston rod S 87, as in EC 25. Cardboard pattern of roof, see page 70 .

Tender. The front and back pairs of wheels (built as in EC 37) are fixed to S 87 's. The middle pair of wheels are built as loose pulleys, each on an S 25, and P29's are placed on the outer sides of the wheels. Both of the vertical F9's, left and right, on the open end of the tender, bear the lowest F17's, each one being
 fastened to the foot of a U 1 on the inside. The two unattached feet of these U 1 's are joined by an S 55 , to which the coupling to the locomotive is attached. On each of the backs of these U I's, F 13's are attached in line with the tender, and support the cardboard floor. The C 1 on the back end is held between two U 2 's, which also carry the buffers made of $S 55^{\prime}$ s and $W 16^{\prime}$ s. The floor is of cardboard $6 \frac{1}{4} \times 2{ }^{\frac{5}{8}}$-ins.

Fig. 1.

No. 161. HORIZONTAL ENGINE-Tractor Type. $\mathbb{R} \mathbb{1}$
Built with seven Sets No. 1, eight Sets No. la and one Set No. 2a.
Parts Required :

29	of A	22	of F 17	2	of	SU2
163	, B 「	281	, N	16	"	U 1
1	, C 1	9	, P 29	7	,	U 2
2	, ERI	2	, P 49	2	,	U 3
27	, F 5	16	, S 25	2	"	V 35
28	, F 9	18	„ S 55	7	"	W10
14	., F13	2	, SUI	14	",	W16

Instructions :

The boiler is open on the under side over the firebox. Beyond this, towards the chimney, F 13's are fastened to the feet of the three A l's of the smoke-box end. The middle F 13 bears a U 1, to which two U 2's are bolted (acting as boiler supports). The ends of the F13's are held by a star, built of four crossed F 9's. The eight ends of these bear alternately U I's and A l's, with which the star is fixed fast to the inner side of the boiler wall, strengthening the structure. The steam cylinder consists of two P 29's and eight S 55's. On one of these S 55's two A l's are fixed and these serve to fasten it to the top of the boiler. At the same time also two F 5 's are fastened to these, running horizontally towards the left side. These bear an F 17 parallel to the long strips of the boiler, and the U 1 for the base of the governor. An AI

[^0]
TRIX

No. 161. HORIZONTAL ENGINE-Tractor Type.

Instructions-Continued.

works as cross-head, to which the connecting rod, F 5, is joined. An F 5 fastened horizontally with an upright S 25 serves as cross head guide, on which the $\mathrm{A} I$ slides in and out. The crank shaft consists of two S 55's as in EC 30. Pulley with hand crank as in EC 40 . Driving pulley for governor as in EC 11.

The front and back ends of the boiler consist of circles of eight F 5's with two crossed F 9's inside. In the centre of the cross two P 29's are fastened, and on the edge of each circle nine A l's are secured.

Five long strips, each made of an F 13 and an F 17, three holes overlapped, are fastened in the upper semi-circles of the boiler ends to the A I's already mentioned, and a punched cardboard strip is inserted at the same time (pattern page 72). In the gaps between these strips struts are fastened, each composed of two F 17's (7 holes overlapped), to the cardboard-three on the right and three on the left sides of the upper circumference.

Fig. 1.
No. 132. AEROPLANE ROUNDABOUT.
Built with six Sets No. 1, six Sets No. Ia, and two Sets No. 2a.

Parts Required:

Fig. 3. Underneath.

Fig. 4. Above.

Instructions-Continued.

Each set of steps consists of two F 9's, two U 2's and two A 1's. These steps are fixed to the feet of the U 2's bolted underneath the F 9's. A transverse strut composed of two F 17's (Fig. 2) prevents the steps from spreading. The driving shaft bears on its outer end a hand crank as in EC 15 and a V pulley next to it as in EC 37. On the other end a friction drive pulley as in EC 35 with two $W 16^{\prime}$ s, is used. The vertical shaft as in Fig. I consists of three S 87's coupled together and has on its lower end beneath the base a P 49 and a P 29 . The P 49 rests on the friction pulley and is driven by means of the contact resulting from the turning of the horizontal shaft. The adjustable U piece above the base is not absolutely necessary. Before coupling the middle vertical S 87 , a P 29 must be placed loosely over it. Four A l's in the form of a cross are fastened to this, and the four vertical F 17's are fixed to the down-turned feet of these.

TRIX

Fig. 6.

No. 132.

AEROPLANE ROUNDABOUT.

Instructions-Continued.

These vertical F 17's are now connected to the U 2's bolted on previously. The lower hub of the roundabout top is made as in Fig. 3 and F 17's are fixed to the eight A l's (Fig. 5). Now the upper hub is made as in Fig. 4 with F 9's fixed to the $\mathrm{A} \mathrm{l}^{\prime}$ s. The two hubs are now connected as Figure 5 shows. To finish the roof we use spanners with their ends touching, fixed to every F9 of the upper wheel hub. This complete part is placed on the vertical shaft, and secured by nuts. The construction of the aeroplanes is shown in Fig. 6. It should be noted, in order to get better results and strength, the vertical column of the model should be lengthened. Instead of utilising four B I's to hold the four A I's and P 29, we use four S 55's and fasten a second $P 29$ to their free upper ends, its middle hole serving as a further bearing for the vertical shaft. The base can be covered with cardboard. See pattern, page 70.

No. 133. RACING CAR.
 Continued.

Instructions:

To build this model begin with the two sides of the body as shown clearly in Figs. 1 and 2, and join them at the back by two A l's, which have been bent to a sharper angle. Then introduce the dashboard and seating, composed of two U 2's with F 9's overlapped. . See Figs. 2 and 3.

The radiator (Fig. 4) consists of six F5's and a U3 with backward turned feet. Between this U3 and the F 5's above, A l's are fastened. The forward pointing feet of these A l's bear the F 5's, which build the upper part of the front wheel springs. Underneath F9's are fixed, as under springs, bolted to the F 5's

Fig. 2. View inside the right half with steering gear. 1

TRIX

Nos. 134 and 135. EXPRESS LOCOMOTIVE AND TENDER.

Instructions:

We commence with the construction of the frame, clearly shown in Figs. 1 and 2. Three U 3's represent the front buffer bearings, which are each fixed together at the sides by W 16 's and nuts and bolts. The foremost U 3 bears the buffer heads made of $S 25^{\prime}$ s and W 16^{\prime} s.

Fig. 2.

TRIX

Nos. 134 and 135. EXPRESS LOCOMOTIVE AND TENDER.

Instructions-Continued.

Before the boiler is fitted up, U I's are fixed right and left of the chassis, with F 17's fastened on the outside to their backs, forming the sides of the cab. Two vertical F 9's are fixed to each of these F 17's, and are each strutted by another F 9 underneath the roof. (Fig. 1). The cab sides are connected above the firebox of the boiler by a $U 3$ in front, and at the back by two $U 2$'s bolted together.

Two A l's are bolted to these and carry the roof. To finish, a vertical F 5 is fixed to each side of the cab (bearing a hand rail S 55 by means of a pair of SU l's) and a horizontal F 5 and $F 9$ fixed underneath. The cab floor made of cardboard is held in by a U3, fixed across the base, and to this is attached an $F 5$ with an A 1 at the end. The foot of the A I bears an SU 2 with an S 25 pushed through the feet and secured by nuts, forming the coupling. The steam cylinders, each composed of two U l's with a U 2 outside, are fixed on each side of the front chassis by two A l's. (See Figs. 2 and 3). The construction of the bogie is shown in Fig. 4. It is suspended by the two $\mathrm{S} 25^{\prime}$'s on the front U 2 of the chassis. Locknuts prevent loosening.

Fig. 4.

The front pair of driving wheels are made of P 49's as in EC 31 and the two back pairs of driving wheels of $\mathbf{P} 49$'s as in EC 43. The front cranks on one side must be set at an angle of 90° to the other side. The last pairs of driving wheels are coupled with two overlapped spanners each side (acting as connecting rods) to the piston rods, S 87's, as in EC 25. The cardboard roof and floor of the cab are 3 by 3 -ins. and $2 \frac{3}{4}$ by $2 \frac{1}{2}$-ins. respectively.

No. 136. EXPRESS PASSENGER COACH.

Instructions-Continued.

An F 9 bridges each set of axle bearings. The two sides of the carriage are connected at the base by U 3's with feet turned inwards. Two more U 3's, with upturned feet, are also fastened to the bottom struts, each seven holes from the centre, and underneath these lies the gas cylinder (Fig. 4). The long sides of this consist of F 13's which are connected at each end by two U 1 's, with their feet bolted together. The bottom is made of two flat strips, each consisting of three F 5's, one hole overlapped. Two diagonally crossed F 17's are fastened above this gas cylinder framework by two U 1 's (see Fig. 4) and the hole is bolted to the U $3^{\circ} \mathrm{s}$. Fig. 3 shows one end of the coach. The buffers and the coupling, consisting of two SU 2's, are secured to an F 9, which is fastened to the U 2's, with nuts in between, and, in this way, the vertical F 9's can be placed between them. The carriage hand rails are fixed vertically from the roof by means of $S U 1$'s. The arrangement of the wheels is similar to those of the tender. The roof of the coach consists of cardboard and is fixed as shown in Fig. 5, and the sides also can be improved by strips of cardboard.

No. 137. TIP LORRY.

Built with ten Sets No. I, six Sets No. la, six Sets No. 2A, two packets of bolts and nuts, and six model rubber tyres, obtainable from all toy shops or toy departments.

No. 138. MECHANICAL NAVVY.

Description.

Parts Required:

78	of A
530	B
68	F
61	F
34	F 13
80	F 17
750	N 1
2	P 29
2	P 49
32	S 25
12	", S 55
8	S 87
7	SUI
9	SU2
40	U 1
20	U 2
4	U 3
22	V 35
17	W10
	W16

Mechanical Navvies or Steam Shovels, so-called because of the shovel-like operation of the grab situated on a swivelling jib, serve chiefly for the digging out of canal beds, etc. The machine is brought along on rails to the place required. By lowering the jib and sinking the grab-arm at the same time, the shovel or grab is brought into contact with the material to be removed. By a continuous action through the drawing upwards of the grab, worked by steel ropes guided over winding drums, the grab fills itself with the material to be excavated.
By the swivelling of the movable crane erection and afterwards by the opening of the grab door the material is deposited in transport wagons. All movements are carried out by means of motor or steam power. The model described here carries out all these functions. The front right crank allows the main jib, by pulleys, to stand either straight or slanting. The rear right-hand crank works in the same way for raising and lowering the grab-arm. The grab door is opened by pressing the lever at the left of the back. Finally the whole erection turns on rails, with a swivelling gudgeon in the centre. The chassis runs on wheels.

Instructions :

The two sides of the chassis, made as in Fig. 2, of three F 17's, three F 5's, two F 9's, and in each corner, two U 2 's, are bolted to a right-angled frame, with the two short sides made of two F 17's, two F 5's, three F 9's and two U 2's. To the upper feet of the four pairs of U 2 's forming the corners, four flat strips, each consisting of two F 17's, are fastened. On the two long sides these flat strips are each angled at the sides, by two A l's.

No. 138. MECHANICAL NAVVY.

Fig. 3.

Instructions-Continued.

This F 17 is supported by two $\mathrm{S} 25^{\circ}$ s from the flat strips placed above so that the S 87's lie horizontally in the same plane. Two F 13's are fastened on the upper side by A l's (Fig. 4) and stiffen the middle girders.
On the cab floor framework is situated the braced framework, supporting the jib, so that it is selfcontained and unattached to the cab itself. The pulley at the front is built as in EC 39 and runs on an S 55 fixed in the U 3's. The vertical girders, made in U-shaped form, are each fixed with three U l's. The upper transverse girder is made of four Ul 's, to which the pulleys 3 and 6 are fixed by means of four A l's. Besides this an SU 2 is added and to this an SU 1 is fastened obliquely bearing an S 25 with pulley 5. A further pulley, 7, is placed on the back of the transverse girder by means of two A l's. Two A l's bolted on the lower cross strut fix it to the cab floor framework. Two more A I's are fastened on the lower cross beam of the cab at this, point and two on the inside of the cross strut. The front rope drum for moving the jib is built of two P 49's which are fixed together by four S 25 's and 16 N 1 's. A fifth S 25 is fixed to the middle hole of the first P 49 as shaft. An S 55 as shaft is placed through the other P 49 and held fast by two N I's. On this S 55, another P 49 is placed (whose larger circle of holes is studded with bolts and nuts as in EC 32), and pressed against the second P 49 by an N I.

TRIX

 No. 138. MECHANICAL NAVVY.
Instructions-Continued.

whose feet are lengthened by F5's and bear between them, on an $S 25$, two pulleys running next to each other. The two pulleys each consist of two W 16's and two W 10 's and are separated from each other by a further W 10. The small washers can be pressed together by means of locknuts so that the string cannot slip between. The jib is fastened to the lower frame by two U l's at the foot.
The arm bearing the grab is U-shaped and is made of three struts, each of a pair of F 17's overlapped four holes. These are fastened at the ends and in the middle by three U l's. At the front end of this arm a U 1 bearing the grab itself is fixed (Fig. 9). The other end of the arm bears a U 3 fastened across by two bolts. An S 87 as hinge pin is pushed through the feet of this U 3 and thus is held to the jib.
The grab is a box consisting of four equal sides, each made of two horizontal and two vertical F 5's joined together in the end holes by eight A l's. However, the bolt is allowed to pass through on both sides in the case of the under side nearest the arm. Note that unlike the sides of the grab, in the front the horizontal F5's lie outside the vertical ones. The back end of the grab is made of three vertical and three horizontal F 5's. Parallel to the lower F 5, a U 1 is fastened whose foot (in the lower
 hole) serves as bearing for an S 55. The grab door, consisting of seven F 5's, bears in two of its corners an SU 1 with upward pointing feet which move hinged on the S 55 . An S 25 fastened to the door also serves as opening lever. On the upper edges of the grab, SU I 's are fastened loosely in the middle hole. To these the hinged frame made of eight SU 2 's is fastened. An A 1 is fixed in the middle of this working frame

TRIX

Model No. 101B. H.M.S. "HOOD."

The famous battle-cruiser flagship of the Atlantic fleet is a ship of 44,600 tons, and has attained speeds of over 32 knots ; she uses oil fuel and is fitted with turbine engines of $144,000 \mathrm{~h}$.p. Although not an ultramodern ship, the "Hood "stands absolutely alone in her class of engineering, and is one of the most famous warships in the world. She is a triumph of a great designer who managed to combine great strength, speed and power with beauty and noble appearance.

Model No. 101B. H.M.S. " HOOD."

Model No. 101B. H.M.S. "HOOD."

Instructions-Continued.
Fig. 2.
one is similar, but A l's replace the U 2 's. The larger barbette turns by means of an S 25 and locknuts in the sixth hole of the middle F 13, and likewise the small one turns in the middle hole of the F 5 bolted to the F 13's.
The stern deck is of the same formation but smaller with only two F 13's, one F 5 and three A 1 's. The after-barbettes are made in the same way except that the smaller one is one hole shorter.
Commencing at the bridge, which is shown in the course of construction in Fig. 3, the feet of a U 2 are opened slightly and an F 9 is connected on each side. Two F 9's overlapped three holes are attached to each of these and angles, flattened
 out, are fastened to the ends. The quarter deck end is completed by two F 9's and a U 1. Beneath this two more F 9's and a U 1 are fastened by two P 29 's. Bend two U 2's as before and bolt two F9's to one and two U 3's to the other and fix them above the base of the bridge by means of an $F 5$ at each side.
The forward conning tower of W 10's and nuts is fixed to an F5 by an S 25, and this is bolted by

$\mathbb{T}^{\mathbb{R}}$ Model No. 102B. SIR MALCOLM CAMPBELL'S "BLUEBIRD."

On February 22nd, 1933, Sir Malcolm Campbell driving his all British "Bluebird"" broke the World Land Speed Record on Daytona Beach with an average speed of $272 \cdot 108$ miles an hour. His previous record established a year before was 253.968 miles an hour.
This marvellous racing car-a triumph of British engineering-is fitted with an enormous Rolls-Royce twelve-cylinder engine of $2,500 \mathrm{~h} . \mathrm{p}$. We are all very proud of the "Bluebird," and all Trix enthusiasts should make this Master Model, which is made with nine Sets No. 1, eight Sets No. 1a, four Sets No. 2a, and four model rubber tyres, obtainable from all toy shops and toy departments.

Parts Required :

18 of A 1	18 of F 13	273 of N	2 of SU1	9 of V35
242 , B 1	$32 . . \mathrm{F} 17$	13. S 25	16 "U 1	9 . W10
$36 . . \mathrm{F} 5$	2 ., P 29	16 ., S 55	7 , U 2	18 ,W16
36 ", F 9	8 .. P 49	2 , S 87	2 , U 3	4 model rubber tyres.

Instructions:

Build the two lower chassis strips, 67 middle holes, each of four F 17's and one F 9 ; these are joined by a bolt and nut at the back and by an S 55 at the front. Four semi-circles are erected from these struts consisting of an F 13 in the first hole, an F 17 in the ninth hole, and an F 13 and F9 in the nineteenth and

Model No. 102B. SIR MALCOLM CAMPBELL'S "BLUEBIRD" $\mathbb{R} \mathbb{X}$

Fig. 1.

Instructions-Continued.

thirty-seventh holes. A l's are connected at the same time in the ninth hole and an F 13 is fixed to these on the side hole. In the 19th, 35th, 37th, 39th and 41 st holes, the strips are spaced by F 9 's with A I's fixed each end in the second middle holes. Nuts are fixed on the bolts between the struts and the A l's to make the exact distance.
The steering gear is made as follows. (See Fig. 2). A U 1 is fixed with bolt and locknuts to each end of the cross strut, F 13 , and F 5's are fastened securely to the inner feet of these $U 1$'s. A l's pointing inwards are fastened to the free ends of the F 5's and an F9 is fixed by bolts and locknuts to the A l's. The steering rod consists of an S 87, A I and F 5, and is attached to the foot of an SU 1, which swivels on a bolt fixed to a second SU 1. An S 25 is fastened securely to this SU 1 at one end and at the other to the right hand F 5 already mentioned. The F 5 of the steering rod moves freely on a bolt which is fixed to a P 29 by two nuts. B I's and N I's are fixed in the P 29 (as crown-wheel gearing) and it is fastened on an S 55 by nuts. This shaft runs in the middle holes of two F5's secured to the two feet of a U 2. Locknuts keep it in position. The $U 2$ is bolted to an $F 17$ which is fixed to the F 9's at the bottom of the chassis. This. F 17 also supports a $U 3$ in the fifth hole from the U2.A $U 3$ is also fixed to an $F 9$ in the 37 th hole with a nut at each end to space the correct distance. These U 3's are bearings for the steering wheel shaft, S 87, which runs in

Model No. 102B. SIR MALCOLM CAMPBELL'S "BLUEBIRD." $\mathbb{T} \mathbb{X}$

Instructions-Continued.

It is joined to the main body by a $U 2$ connected to the F 5's at the bottom and by an A 1 connected to the $P 29$ at the top. This angle is fastened to an F5 and two A 1 's. The feet of these A I's are bent outwards and F 9's are attached to them. Struts fastened to these vertical F 9's lead to the fin, which is finished off by two vertical F 13's at the back end.
The wheel guards are constructed as shown in Fig. 1. The two front pairs are made of F 5's and U I's and the back pair of F5's and U 2's, and they are joined to the body of the car by spindles.
The wind screen is made of celluloid and the driver's seat is made of thin cardboard. Patterns, page 72.

The scoop to super charger can be made of wood or plasticine and fitted to the slope of the bonnet. Two S 55 's with sealing wax heads are fastened by A 1 's to the front of the car. These represent steering guides. Small Union Jacks pasted to the sides of the car and fin give a realistic touch to the model.

Fig. 5.

Instructions-Continued.

S 55's between locknuts and on the outside attach the F 13's, making them fast by nuts.
SU 2's are fixed to each of the P 49's similar to EC 31 and to one of these an S 55 is attached. This shaft runs in the top hole of the F5's and a pulley as in EC 40 is fixed to the S 55 . A rubber driving band is inserted fixed to the S 55 . A rubber driving band is inserted
over this pulley. An SU I at the other end of the shaft keeps it in position. An intermediate shaft, S 87, runs in the horizontal F 9's of the tower. The rubber driving band is placed over a second pulley. fixed to the shaft as in EC 37. On the inner end of the shaft a pulley, made of two W 16's and nuts, is fixed. An SU I and crank handle are secured to the other end.
The Permag Motor is fastened in the base by S 55's as
illustrated and drives the intermediate shaft by means of
The Permag Motor is fastened in the base by S 55's as
illustrated and drives the intermediate shaft by means of another rubber driving band passed over the small pulley.
Figures and coloured string complete this model.

Fig. 2.

BUILD 150 MODELS штн "ELEMENTRIX!"

TRIX in any form represents heaping value, but ELEMENTRIX makes pocket money go further than ever before and smashes all records in this respect! With ELEMENTRIX, which is made up of Trix No. I and Trix No. IA, packed in a handsome box, you can actually make 150 different models! The fine large book that accompanies the Set shows every one of these models, and how they are made. If you wish to make rapid strides with your favourite hobby, or add to existing equipment, by all means get ELEMENTRIX.

WIN PRIZES FOR MODELS

Should you design an original model, send the design to TRIX and Address all enquiries to : in an early post you will receive the opinion of an expert. For models showing fine originality and skill, TRIX awards suitable prizes. Send a clear drawing or photo of your model. Don't hesitate to write to TRIX on any subject. TRIX treasules every letter received from budding "engineers"!

TRIX INFORMATION BUREAU

4, GOIDEEN LANE, LONDON, E.C.1.

[^0]:

